FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Liang, X., Holy, T.E., Taghert, P.H. (2023). Polyphasic circadian neural circuits drive differential activities in multiple downstream rhythmic centers.  Curr. Biol. 33(2): 351--363.e3.
FlyBase ID
FBrf0255503
Publication Type
Research paper
Abstract
Circadian clocks align various behaviors such as locomotor activity, sleep/wake, feeding, and mating to times of day that are most adaptive. How rhythmic information in pacemaker circuits is translated to neuronal outputs is not well understood. Here, we used brain-wide, 24-h in vivo calcium imaging in the Drosophila brain and searched for circadian rhythmic activity among identified clusters of dopaminergic (DA) and peptidergic neurosecretory (NS) neurons. Such rhythms were widespread and imposed by the PERIOD-dependent clock activity within the ∼150-cell circadian pacemaker network. The rhythms displayed either a morning (M), evening (E), or mid-day (MD) phase. Different subgroups of circadian pacemakers imposed neural activity rhythms onto different downstream non-clock neurons. Outputs from the canonical M and E pacemakers converged to regulate DA-PPM3 and DA-PAL neurons. E pacemakers regulate the evening-active DA-PPL1 neurons. In addition to these canonical M and E oscillators, we present evidence for a third dedicated phase occurring at mid-day: the l-LNv pacemakers present the MD activity peak, and they regulate the MD-active DA-PPM1/2 neurons and three distinct NS cell types. Thus, the Drosophila circadian pacemaker network is a polyphasic rhythm generator. It presents dedicated M, E, and MD phases that are functionally transduced as neuronal outputs to organize diverse daily activity patterns in downstream circuits.
PubMed ID
PubMed Central ID
PMC9877191 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Curr. Biol.
    Title
    Current Biology
    Publication Year
    1991-
    ISBN/ISSN
    0960-9822
    Data From Reference