FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Hamblen, M.J., White, N.E., Emery, P.T., Kaiser, K., Hall, J.C. (1998). Molecular and behavioral analysis of four period mutants in Drosophila melanogaster encompassing extreme short, novel long, and unorthodox arrhythmic types.  Genetics 149(1): 165--178.
FlyBase ID
FBrf0102841
Publication Type
Research paper
Abstract
Of the mutationally defined rhythm genes in Drosophila melanogaster, period (per) has been studied the most. We have molecularly characterized three older per mutants-perT, perClk, and per04-along with a novel long-period one (perSLIH). Each mutant is the result of a single nucleotide change. perT, perClk, and perSLIH are accounted for by amino acid substitutions; per04 is altered at a splice site acceptor and causes aberrant splicing. perSLIH exhibits a long period of 27 hr in constant darkness and entrains to light/dark (L/D) cycles with a later-than-normal evening peak of locomotion. perSLIH males are more rhythmic than females. perSLIH's clock runs faster at higher temperatures and slower at lower ones, exhibiting a temperature-compensation defect opposite to that of perLong. The per-encoded protein (PER) in the perT mutant cycles in L/D with an earlier-than-normal peak; this peak in perSLIH is later than normal, and there was a slight difference in the PER timecourse of males vs. females. PER in per04 was undetectable. Two of these mutations, perSLIH and perClk, lie within regions of PER that have not been studied previously and may define important functional domains of this clock protein.
PubMed ID
PubMed Central ID
PMC1460118 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Genetics
    Title
    Genetics
    Publication Year
    1916-
    ISBN/ISSN
    0016-6731
    Data From Reference
    Aberrations (3)
    Alleles (9)
    Genes (2)
    Transgenic Constructs (1)