FB2024_04 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Zsindely, N., Pankotai, T., Ujfaludi, Z., Lakatos, D., Komonyi, O., Bodai, L., Tora, L., Boros, I.M. (2009). The loss of histone H3 lysine 9 acetylation due to dSAGA-specific dAda2b mutation influences the expression of only a small subset of genes.  Nucleic Acids Res. 37(20): 6665--6680.
FlyBase ID
FBrf0209301
Publication Type
Research paper
Abstract
In Drosophila, the dADA2b-containing dSAGA complex is involved in histone H3 lysine 9 and 14 acetylation. Curiously, although the lysine 9- and 14-acetylated histone H3 levels are drastically reduced in dAda2b mutants, these animals survive until a late developmental stage. To study the molecular consequences of the loss of histone H3 lysine 9 and 14 acetylation, we compared the total messenger ribonucleic acid (mRNA) profiles of wild type and dAda2b mutant animals at two developmental stages. Global gene expression profiling indicates that the loss of dSAGA-specific H3 lysine 9 and 14 acetylation results in the expression change (up- or down-regulation) of a rather small subset of genes and does not cause a general transcription de-regulation. Among the genes up-regulated in dAda2b mutants, particularly high numbers are those which play roles in antimicrobial defense mechanisms. Results of chromatin immunoprecipitation experiments indicate that in dAda2b mutants, the lysine 9-acetylated histone H3 levels are decreased both at dSAGA up- and down-regulated genes. In contrast to that, in the promoters of dSAGA-independent ribosomal protein genes a high level of histone H3K9ac is maintained in dAda2b mutants. Our data suggest that by acetylating H3 at lysine 9, dSAGA modifies Pol II accessibility to specific promoters differently.
PubMed ID
PubMed Central ID
PMC2777428 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Nucleic Acids Res.
    Title
    Nucleic Acids Research
    Publication Year
    1974-
    ISBN/ISSN
    0305-1048
    Data From Reference