FB2024_04 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Manh, T.P.V., Mokrane, M., Georgenthum, E., Flavigny, J., Carrier, L., Semeriva, M., Piovant, M., Roder, L. (2005). Expression of cardiac myosin-binding protein-C (cMyBP-C) in Drosophila as a model for the study of human cardiomyopathies.  Hum. Mol. Genet. 14(1): 7--17.
FlyBase ID
FBrf0187722
Publication Type
Research paper
Abstract
Mutations in the MYBPC3 gene encoding human cardiac myosin-binding protein-C (cMyBP-C) are associated with familial hypertrophic cardiomyopathy (FHC), but the molecular mechanisms involved are not fully understood. In addition, development of FHC is sensitive to genetic background, and the search for candidate modifier genes is crucial with a view to proposing diagnosis and exploring new therapies. We used Drosophila as the model to investigate the in vivo consequences of human cMyBP-C mutations. We first produced transgenic flies that specifically express human wild-type or two C-terminal truncated cMyBP-Cs in indirect flight muscles (IFM), a tissue particularly amenable to genetic and molecular analyses. First, incorporation of human cMyBP-C into the IFM led to sarcomeric structural abnormalities and to a flightless phenotype aggravated by age and human gene dosage. Second, transcriptome analysis of transgenic IFM using nylon microarrays showed the remodelling of a transcriptional program involving 97 out of 3570 Drosophila genes. Among them, the Calmodulin gene encoding a key component of muscle contraction, found up-regulated in transgenic IFM, was evaluated as a potential modifier gene. Calmodulin mutant alleles rescued the flightless phenotype, and therefore behave as dominant suppressors of the flightless phenotype suggesting that Calmodulin might be a modifier gene in the context of human FHC. In conclusion, we suggest that the combination of heterologous transgenesis and transcriptome analysis in Drosophila could be of great value as a way to glean insights into the molecular mechanisms underlying FHC and to propose potential candidate modifier genes.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Hum. Mol. Genet.
    Title
    Human Molecular Genetics
    Publication Year
    1992-
    ISBN/ISSN
    0964-6906
    Data From Reference