FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Schutt, C., Hilfiker, A., Nothiger, R. (1998). virilizer regulates Sex-lethal in the germline of Drosophila melanogaster.  Development 125(8): 1501--1507.
FlyBase ID
FBrf0102614
Publication Type
Research paper
Abstract
In Drosophila, the gene Sex-lethal (Sxl) is required for female development. It controls sexual differentiation in the soma, dosage compensation and oogenesis. The continuous production of SXL proteins in XX animals is maintained by autoregulation and depends on virilizer (vir). This gene is required in somatic cells for the female-specific splicing of Sxl primary transcripts and for an unknown vital process in both sexes. In the soma, clones of XX cells lacking Sxl or vir are sexually transformed and form male structures; in the germline, XX cells mutant for Sxl extensively proliferate, but are unable to differentiate. We now studied the role of vir in the germline by generating germline chimeras. We found that XX germ cells mutant for vir, in contrast to cells mutant for Sxl, perform oogenesis. We show that the early production of SXL in undifferentiated germ cells is independent of vir while, later in oogenesis, expression of Sxl becomes dependent on vir. We conclude that the early SXL proteins are sufficient for the production of eggs whereas the later SXL proteins are dispensable for this process. However, vir must be active in the female germline to allow normal embryonic development because maternal products of vir are required for the early post-transcriptional regulation of Sxl in XX embryos and for a vital process in embryos of both sexes.
PubMed ID
PubMed Central ID
DOI
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Development
    Title
    Development
    Publication Year
    1987-
    ISBN/ISSN
    0950-1991
    Data From Reference
    Aberrations (1)
    Alleles (16)
    Genes (5)
    Insertions (2)
    Transgenic Constructs (5)