FB2024_04 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Fukuyama, H., Verdier, Y., Guan, Y., Makino-Okamura, C., Shilova, V., Liu, X., Maksoud, E., Matsubayashi, J., Haddad, I., Spirohn, K., Ono, K., Hetru, C., Rossier, J., Ideker, T., Boutros, M., Vinh, J., Hoffmann, J.A. (2013). Landscape of protein-protein interactions in Drosophila immune deficiency signaling during bacterial challenge.  Proc. Natl. Acad. Sci. U.S.A. 110(26): 10717--10722.
FlyBase ID
FBrf0221998
Publication Type
Research paper
Abstract
The Drosophila defense against pathogens largely relies on the activation of two signaling pathways: immune deficiency (IMD) and Toll. The IMD pathway is triggered mainly by Gram-negative bacteria, whereas the Toll pathway responds predominantly to Gram-positive bacteria and fungi. The activation of these pathways leads to the rapid induction of numerous NF-κB-induced immune response genes, including antimicrobial peptide genes. The IMD pathway shows significant similarities with the TNF receptor pathway. Recent evidence indicates that the IMD pathway is also activated in response to various noninfectious stimuli (i.e., inflammatory-like reactions). To gain a better understanding of the molecular machinery underlying the pleiotropic functions of this pathway, we first performed a comprehensive proteomics analysis to identify the proteins interacting with the 11 canonical members of the pathway initially identified by genetic studies. We identified 369 interacting proteins (corresponding to 291 genes) in heat-killed Escherichia coli-stimulated Drosophila S2 cells, 92% of which have human orthologs. A comparative analysis of gene ontology from fly or human gene annotation databases points to four significant common categories: (i) the NuA4, nucleosome acetyltransferase of H4, histone acetyltransferase complex, (ii) the switching defective/sucrose nonfermenting-type chromatin remodeling complex, (iii) transcription coactivator activity, and (iv) translation factor activity. Here we demonstrate that sumoylation of the IκB kinase homolog immune response-deficient 5 plays an important role in the induction of antimicrobial peptide genes through a highly conserved sumoylation consensus site during bacterial challenge. Taken together, the proteomics data presented here provide a unique avenue for a comparative functional analysis of proteins involved in innate immune reactions in flies and mammals.
PubMed ID
PubMed Central ID
PMC3696746 (PMC) (EuropePMC)
Related Publication(s)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Proc. Natl. Acad. Sci. U.S.A.
    Title
    Proceedings of the National Academy of Sciences of the United States of America
    Publication Year
    1915-
    ISBN/ISSN
    0027-8424
    Data From Reference
    Genes (38)
    Physical Interactions (1)
    Cell Lines (1)