FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Chen, J., Xu, N., Wang, C., Huang, P., Huang, H., Jin, Z., Yu, Z., Cai, T., Jiao, R., Xi, R. (2018). Transient Scute activation via a self-stimulatory loop directs enteroendocrine cell pair specification from self-renewing intestinal stem cells.  Nat. Cell Biol. 20(2): 152--161.
FlyBase ID
FBrf0237912
Publication Type
Research paper
Abstract
The process through which multiple types of cell-lineage-restricted progenitor cells are specified from multipotent stem cells is unclear. Here we show that, in intestinal stem cell lineages in adult Drosophila, in which the Delta-Notch-signalling-guided progenitor cell differentiation into enterocytes is the default mode, the specification of enteroendocrine cells (EEs) is initiated by transient Scute activation in a process driven by transcriptional self-stimulation combined with a negative feedback regulation between Scute and Notch targets. Scute activation induces asymmetric intestinal stem cell divisions that generate EE progenitor cells. The mitosis-inducing and fate-inducing activities of Scute guide each EE progenitor cell to divide exactly once prior to its terminal differentiation, yielding a pair of EEs. The transient expression of a fate inducer therefore specifies both type and numbers of committed progenitor cells originating from stem cells, which could represent a general mechanism used for diversifying committed progenitor cells from multipotent stem cells.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Nat. Cell Biol.
    Title
    Nature Cell Biology
    Publication Year
    1999-
    ISBN/ISSN
    1465-7392 1476-4679
    Data From Reference