FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Power, D., Srinivasan, S., Gunawardena, S. (2012). In-vivo evidence for the disruption of Rab11 vesicle transport by loss of huntingtin.  Neuroreport 23(16): 970--977.
FlyBase ID
FBrf0222084
Publication Type
Research paper
Abstract
The neuropathology of Huntington's disease includes nuclear and cytoplasmic inclusions, striatal neuronal loss, and gliosis. Previous work put forward a tantalizing proposal that disruption of axonal transport within long, narrow-caliber axons caused accumulations that could elicit cell death, ultimately resulting in neuronal dysfunction. Although a role for the Huntington's disease protein huntingtin (HTT) has been reported in axonal transport, it is unclear whether HTT affects the transport of all vesicles or influences only a specific class of vesicles. As an interaction between HTT and Rab5 was previously shown to mediate transport on actin filaments, here we tested the hypothesis that a HTT-Rab5 complex also exists for transport on microtubules during axonal transport. Surprisingly, we found that HTT influences Rab11 vesicles, not Rab5 vesicles. Reduction of HTT perturbed the transport of Rab11 vesicles. Reductions in kinesin and dynein motors also perturbed Rab11 vesicle transport indicating that these motors are required for bidirectional transport of Rab11. These results suggest that HTT plays a key role in the movement of Rab11 vesicles within axons. Thus, disruption of transport mediated by mutant HTT could contribute to early neuropathology observed in Huntington's diseases.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Neuroreport
    Title
    Neuroreport
    Publication Year
    1990-
    ISBN/ISSN
    0959-4965
    Data From Reference