FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Adler, P., Charlton, J., Liu, J. (1998). Mutations in the cadherin superfamily member gene dachsous cause a tissue polarity phenotype by altering frizzled signaling.  Development 125(5): 959--968.
FlyBase ID
FBrf0101864
Publication Type
Research paper
Abstract
The adult cuticular wing of Drosophila is covered by an array of distally pointing hairs that reveals the planar polarity of the wing. We report here that mutations in dachsous disrupt this regular pattern, and do so by affecting frizzled signaling. dachsous encodes a large membrane protein that contains many cadherin domains and dachsous mutations cause deformed body parts. We found that mutations in dachsous also result in a tissue polarity phenotype that at the cellular level is similar to frizzled, dishevelled and prickle, as many cells form a single hair of abnormal polarity. Although their cellular phenotype is similar to frizzled, dishevelled and prickle, dachsous mutant wings display a unique and distinctive abnormal hair polarity pattern including regions of reversed polarity. The development of this pattern requires the function of frizzled pathway genes suggesting that in a dachsous mutant the frizzled pathway is functioning - but in an abnormal way. Genetic experiments indicated that dachsous was not required for the intracellular transduction of the frizzled signal. However, we found that dachsous clones disrupted the polarity of neighboring wild-type cells suggesting the possibility that dachsous affected the intercellular signaling function of frizzled. Consistent with this hypothesis we found that frizzled clones in a dachsous mutant background displayed enhanced domineering non-autonomy, and that the anatomical direction of this domineering non-autonomy was altered in regions of dachsous wings that have abnormal hair polarity. The direction of this domineering nonautonomy was coincident with the direction of the abnormal hair polarity. We conclude that dachsous causes a tissue polarity phenotype because it alters the direction of frizzled signaling.
PubMed ID
PubMed Central ID
DOI
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Development
    Title
    Development
    Publication Year
    1987-
    ISBN/ISSN
    0950-1991
    Data From Reference
    Aberrations (5)
    Alleles (20)
    Genes (8)
    Transgenic Constructs (1)