FB2024_04 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Ma, S., Sun, H., Yang, W., Gao, M., Xu, H. (2020). Impact of Probiotic Combination in InR[E19]/TM2 Drosophila melanogaster on Longevity, Related Gene Expression, and Intestinal Microbiota: A Preliminary Study.  Microorganisms 8(7): E1027.
FlyBase ID
FBrf0246227
Publication Type
Research paper
Abstract
The insulin receptor (InR) pertains to the insulin receptor family, which plays a key role in the insulin/insulin-like growth factor (IGF)-like signaling (IIS) pathway. Insulin signaling defects may result in the development of metabolic diseases, such as type 2 diabetes, and the InR mutant has been suggested to bear insulin signaling deficiency. Numerous studies have reported that probiotics are beneficial for the treatment of diabetes; however, the effect of probiotics on patients with InR deficiency has seldom been reported. Therefore, we chose the InR[E19]/TM2 Drosophila melanogaster to investigate. The results indicated that probiotics significantly reduce the mean and median lifespan of InR[E19]/TM2 Drosophila (by 15.56% and 23.82%, respectively), but promote that of wild-type files (by 9.31% and 16.67%, respectively). Significant differences were obtained in the expression of lifespan- and metabolism-related genes, such as Imp-L2, Tor, and GstD2, between the standard diet groups and the probiotics groups. Furthermore, analysis of 16S rDNA via high throughput sequencing revealed that the gut bacterial diversity of Drosophila fed with a probiotic combination also differs from that of Drosophila fed with a standard diet. In summary, these findings indicate that a probiotic combination indeed affects InR[E19]/TM2 Drosophila, but not all of its impacts are positive.
PubMed ID
PubMed Central ID
PMC7409141 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Microorganisms
    Title
    Microorganisms
    ISBN/ISSN
    2076-2607
    Data From Reference
    Alleles (1)
    Chemicals (1)
    Genes (19)