FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Ueno, K., Morstein, J., Ofusa, K., Naganos, S., Suzuki-Sawano, E., Minegishi, S., Rezgui, S.P., Kitagishi, H., Michel, B.W., Chang, C.J., Horiuchi, J., Saitoe, M. (2020). Carbon Monoxide, a Retrograde Messenger Generated in Postsynaptic Mushroom Body Neurons, Evokes Noncanonical Dopamine Release.  J. Neurosci. 40(18): 3533--3548.
FlyBase ID
FBrf0245521
Publication Type
Research paper
Abstract
Dopaminergic neurons innervate extensive areas of the brain and release dopamine (DA) onto a wide range of target neurons. However, DA release is also precisely regulated. In Drosophila melanogaster brain explant preparations, DA is released specifically onto α3/α'3 compartments of mushroom body (MB) neurons that have been coincidentally activated by cholinergic and glutamatergic inputs. The mechanism for this precise release has been unclear. Here we found that coincidentally activated MB neurons generate carbon monoxide (CO), which functions as a retrograde signal evoking local DA release from presynaptic terminals. CO production depends on activity of heme oxygenase in postsynaptic MB neurons, and CO-evoked DA release requires Ca2+ efflux through ryanodine receptors in DA terminals. CO is only produced in MB areas receiving coincident activation, and removal of CO using scavengers blocks DA release. We propose that DA neurons use two distinct modes of transmission to produce global and local DA signaling.SIGNIFICANCE STATEMENT Dopamine (DA) is needed for various higher brain functions, including memory formation. However, DA neurons form extensive synaptic connections, while memory formation requires highly specific and localized DA release. Here we identify a mechanism through which DA release from presynaptic terminals is controlled by postsynaptic activity. Postsynaptic neurons activated by cholinergic and glutamatergic inputs generate carbon monoxide, which acts as a retrograde messenger inducing presynaptic DA release. Released DA is required for memory-associated plasticity. Our work identifies a novel mechanism that restricts DA release to the specific postsynaptic sites that require DA during memory formation.
PubMed ID
PubMed Central ID
PMC7189754 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    J. Neurosci.
    Title
    Journal of Neuroscience
    Publication Year
    1981-
    ISBN/ISSN
    0270-6474 1529-2401
    Data From Reference