FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Jusiak, B., Abulimiti, A., Haelterman, N., Chen, R., Mardon, G. (2012). MAPK target sites of eyes absent are not required for eye development or survival in Drosophila.  PLoS ONE 7(12): e50776.
FlyBase ID
FBrf0220418
Publication Type
Research paper
Abstract
Eyes absent (Eya) is a highly conserved transcription cofactor and protein phosphatase that plays an essential role in eye development and survival in Drosophila. Ectopic eye induction assays using cDNA transgenes have suggested that mitogen activated protein kinase (MAPK) activates Eya by phosphorylating it on two consensus target sites, S402 and S407, and that this activation potentiates the ability of Eya to drive eye formation. However, this mechanism has never been tested in normal eye development. In the current study, we generated a series of genomic rescue transgenes to investigate how loss- and gain-of-function mutations at these two MAPK target sites within Eya affect Drosophila survival and normal eye formation: eya(+)GR, the wild-type control; eya(SA)GR, which lacks phosphorylation at the two target residues; and eya(SDE)GR, which contains phosphomimetic amino acids at the same two residues. Contrary to the previous studies in ectopic eye development, all eya genomic transgenes tested rescue both eye formation and survival equally effectively. We conclude that, in contrast to ectopic eye formation, MAPK-mediated phosphorylation of Eya on S402 and S407 does not play a role in normal development. This is the first study in Drosophila to evaluate the difference in outcomes between genomic rescue and ectopic cDNA-based overexpression of the same gene. These findings indicate similar genomic rescue strategies may prove useful for re-evaluating other long-standing Drosophila developmental models.
PubMed ID
PubMed Central ID
PMC3520925 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    PLoS ONE
    Title
    PLoS ONE
    Publication Year
    2006-
    ISBN/ISSN
    1932-6203
    Data From Reference
    Aberrations (1)
    Alleles (5)
    Genes (2)
    Natural transposons (1)
    Transgenic Constructs (3)