FB2024_04 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Shin, J.E., Diantonio, A. (2011). Highwire regulates guidance of sister axons in the Drosophila mushroom body.  J. Neurosci. 31(48): 17689--17700.
FlyBase ID
FBrf0216839
Publication Type
Research paper
Abstract
Axons often form synaptic contacts with multiple targets by extending branches along different paths. PHR (Pam/Highwire/RPM-1) family ubiquitin ligases are important regulators of axon development, with roles in axon outgrowth, target selection, and synapse formation. Here we report the function of Highwire, the Drosophila member of the PHR family, in promoting the segregation of sister axons during mushroom body (MB) formation. Loss of highwire results in abnormal development of the axonal lobes in the MB, leading to thinned and shortened lobes. The highwire defect is attributable to guidance errors after axon branching, in which sister axons that should target different lobes instead extend together into the same lobe. The highwire mutant MB displays elevation in the level of the MAPKKK Wallenda/DLK (dual leucine zipper kinase), a previously identified substrate of Highwire, and genetic suppression studies show that Wallenda/DLK is required for the highwire MB phenotype. The highwire lobe defect is limited to α/β lobe axons, but transgenic expression of highwire in the pioneering α'/β' neurons rescues the phenotype. Mosaic analysis further shows that α/β axons of highwire mutant clones develop normally, demonstrating a non-cell-autonomous role of Highwire for axon guidance. Genetic interaction studies suggest that Highwire and Plexin A signals may interact to regulate normal morphogenesis of α/β axons.
PubMed ID
PubMed Central ID
PMC3457808 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    J. Neurosci.
    Title
    Journal of Neuroscience
    Publication Year
    1981-
    ISBN/ISSN
    0270-6474 1529-2401
    Data From Reference