FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Pal Bhadra, M., Bhadra, U., Kundu, J., Birchler, J.A. (2005). Gene expression analysis of the function of the male-specific lethal complex in Drosophila.  Genetics 169(4): 2061--2074.
FlyBase ID
FBrf0187629
Publication Type
Research paper
Abstract
Dosage compensation refers to the equal expression of X-linked genes despite the difference in copy number between the two sexes. The male-specific lethal (MSL) complex is concentrated on the X chromosome in males. A gene expression assay for embryos was developed to examine the function of this complex. In mutant male embryos without either the MSL complex or MOF histone acetylase, dosage compensation is retained but autosomal expression is increased. Dosage compensation is lost in the double-mutant embryos. In embryos in which the MSL complex and MOF are targeted to the X chromosomes in females, the results are consistent with previous surveys showing that in general the X expression remains unchanged, but autosomal expression is reduced. Mutations in the ISWI chromatin-remodeling component cause increases specifically of X-linked genes in males. Thus, the function of the MSL complex in conjunction with ISWI is postulated to override the effect on gene expression of high histone acetylation on the male X. The basic determinant of dosage compensation is suggested to be an inverse dosage effect produced by an imbalance of transcription factors on the X vs. the autosomes. The sequestration of the MSL complex to the male X may have evolved to counteract a similar effect on the autosomes and to prevent an overexpression of the X chromosome in males that would otherwise occur due to the high levels of histone acetylation.
PubMed ID
PubMed Central ID
PMC1449592 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Genetics
    Title
    Genetics
    Publication Year
    1916-
    ISBN/ISSN
    0016-6731
    Data From Reference
    Aberrations (1)
    Alleles (7)
    Genes (18)