FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Bhat, K.M., Farkas, G., Karch, F., Gyurkovics, H., Gausz, J., Schedl, P. (1996). The GAGA factor is required in the early Drosophila embryo not only for transcriptional regulation but also for nuclear division.  Development 122(4): 1113--1124.
FlyBase ID
FBrf0086911
Publication Type
Research paper
Abstract
The GAGA protein of Drosophila was first identified as a stimulatory factor in in vitro transcription assays using the engrailed and Ultrabithorax promoters. Subsequent studies have suggested that the GAGA factor promotes transcription by blocking the repressive effects of histones; moreover, it has been shown to function in chromatin remodeling, acting together with other factors in the formation of nuclease hypersensitive sites in vitro. The GAGA factor is encoded by the Trithorax-like locus and in the studies reported here we have used the maternal effect allele Trl13C to examine the functions of the protein during embryogenesis. We find that GAGA is required for the proper expression of a variety of developmental loci that contain GAGA binding sites in their upstream regulatory regions. The observed disruptions in gene expression are consistent with those expected for a factor involved in chromatin remodeling. In addition to facilitating gene expression, the GAGA factor appears to have a more global role in chromosome structure and function. This is suggested by the spectrum of nuclear cleavage cycle defects observed in Trl13C embryos. These defects include asynchrony in the cleavage cycles, failure in chromosome condensation, abnormal chromosome segregation and chromosome fragmentation. These defects are likely to be related to the association of the GAGA protein with heterochromatic satellite sequences which is observed throughout the cell cycle.
PubMed ID
PubMed Central ID
DOI
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Development
    Title
    Development
    Publication Year
    1987-
    ISBN/ISSN
    0950-1991
    Data From Reference
    Alleles (2)
    Genes (4)
    Insertions (1)