FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Zhao, M.L., Sable, E.O., Iverson, L.E., Wu, C.F. (1995). Functional expression of Shaker K+ channels in cultured Drosophila 'giant' neurons derived from Sh cDNA transformants: distinct properties, distribution, and turnover.  J. Neurosci. 15(2): 1406--1418.
FlyBase ID
FBrf0080515
Publication Type
Research paper
Abstract
Expression of transgenic Shaker (Sh) channels has not previously been examined in Drosophila neurons. We studied K+ current by whole-cell recording in cultured "giant" neurons derived from germline transformants. Independent lines were generated by using a P-element vector, in which transcription of the 29-4 cDNA, one of the Sh splicing variants (Iverson and Rudy, 1990), was under the control of a heat shock (HS)-inducible promoter. Transformants in wild-type and two different Sh mutant backgrounds all exhibited an HS-inducible, A-type K+ current that was characterized by a much slower recovery from inactivation and a higher sensitivity to 4-aminopyridine than native K+ currents of Sh 29-4 currents expressed in Xenopus oocytes. Despite similarities in the kinetic and pharmacological properties of the HS-induced current in all backgrounds examined, host-dependent differences in the peak current amplitude have been consistently observed between multiple lines of 29-4 ShM and 29-4 Sh120 that might reflect differential channel subunit assembly in different hosts. Isolation of the novel 29-4 currents allowed determination of the channel turnover rate in cultured neurons. These currents persisted for up to 3 d or more, comparable with the durations previously reported for Na+ and Ca2+ channels. Surprisingly, the percentage of cells expressing inactivating K+ currents remained approximately the same with or without HS induction, suggesting that some mechanisms exist to restrict functional expression of inactivating K+ channels, including transgenic Sh channels and those not encoded by the Sh locus, to certain types of neurons.
PubMed ID
PubMed Central ID
PMC6577804 (PMC) (EuropePMC)
DOI
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    J. Neurosci.
    Title
    Journal of Neuroscience
    Publication Year
    1981-
    ISBN/ISSN
    0270-6474 1529-2401
    Data From Reference
    Alleles (4)
    Genes (3)
    Transgenic Constructs (1)