FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Blum, I.D., Keleş, M.F., Baz, E.S., Han, E., Park, K., Luu, S., Issa, H., Brown, M., Ho, M.C.W., Tabuchi, M., Liu, S., Wu, M.N. (2021). Astroglial Calcium Signaling Encodes Sleep Need in Drosophila.  Curr. Biol. 31(1): 150--162.e7.
FlyBase ID
FBrf0247709
Publication Type
Research paper
Abstract
Sleep is under homeostatic control, whereby increasing wakefulness generates sleep need and triggers sleep drive. However, the molecular and cellular pathways by which sleep need is encoded are poorly understood. In addition, the mechanisms underlying both how and when sleep need is transformed to sleep drive are unknown. Here, using ex vivo and in vivo imaging, we show in Drosophila that astroglial Ca2+ signaling increases with sleep need. We demonstrate that this signaling is dependent on a specific L-type Ca2+ channel and is necessary for homeostatic sleep rebound. Thermogenetically increasing Ca2+ in astrocytes induces persistent sleep behavior, and we exploit this phenotype to conduct a genetic screen for genes required for the homeostatic regulation of sleep. From this large-scale screen, we identify TyrRII, a monoaminergic receptor required in astrocytes for sleep homeostasis. TyrRII levels rise following sleep deprivation in a Ca2+-dependent manner, promoting further increases in astrocytic Ca2+ and resulting in a positive-feedback loop. Moreover, our findings suggest that astrocytes then transmit this sleep need to a sleep drive circuit by upregulating and releasing the interleukin-1 analog Spätzle, which then acts on Toll receptors on R5 neurons. These findings define astroglial Ca2+ signaling mechanisms encoding sleep need and reveal dynamic properties of the sleep homeostatic control system.
PubMed ID
PubMed Central ID
PMC8442851 (PMC) (EuropePMC)
Related Publication(s)
Note

Calcium signals in astrocytes of the fly brain promote sleep.
Srinivasan, 2021, Cell Calcium 94: 102341 [FBrf0248286]

Sleep: Astrocytes Take Their Toll on Tired Flies.
Jepson, 2021, Curr. Biol. 31(1): R27--RR30 [FBrf0249513]

Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Curr. Biol.
    Title
    Current Biology
    Publication Year
    1991-
    ISBN/ISSN
    0960-9822
    Data From Reference
    Alleles (31)
    Genes (17)
    Natural transposons (1)
    Insertions (6)
    Experimental Tools (3)
    Transgenic Constructs (29)