FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Sauerwald, J., Backer, W., Matzat, T., Schnorrer, F., Luschnig, S. (2019). Matrix metalloproteinase 1 modulates invasive behavior of tracheal branches during entry into Drosophila flight muscles.  eLife 8(): e48857.
FlyBase ID
FBrf0243825
Publication Type
Research paper
Abstract
Tubular networks like the vasculature extend branches throughout animal bodies, but how developing vessels interact with and invade tissues is not well understood. We investigated the underlying mechanisms using the developing tracheal tube network of Drosophila indirect flight muscles (IFMs) as a model. Live imaging revealed that tracheal sprouts invade IFMs directionally with growth-cone-like structures at branch tips. Ramification inside IFMs proceeds until tracheal branches fill the myotube. However, individual tracheal cells occupy largely separate territories, possibly mediated by cell-cell repulsion. Matrix metalloproteinase 1 (MMP1) is required in tracheal cells for normal invasion speed and for the dynamic organization of growth-cone-like branch tips. MMP1 remodels the CollagenIV-containing matrix around branch tips, which show differential matrix composition with low CollagenIV levels, while Laminin is present along tracheal branches. Thus, tracheal-derived MMP1 sustains branch invasion by modulating the dynamic behavior of sprouting branches as well as properties of the surrounding matrix.
PubMed ID
PubMed Central ID
PMC6795481 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    eLife
    Title
    eLife
    ISBN/ISSN
    2050-084X
    Data From Reference