FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Altanbyek, V., Cha, S.J., Kang, G.U., Im, D.S., Lee, S., Kim, H.J., Kim, K. (2016). Imbalance of mitochondrial dynamics in Drosophila models of amyotrophic lateral sclerosis.  Biochem. Biophys. Res. Commun. 481(3-4): 259--264.
FlyBase ID
FBrf0233994
Publication Type
Research paper
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common neurodegenerative disease, characterized by progressive and selective loss of motor neurons in the brain and spinal cord. DNA/RNA-binding proteins such as TDP-43, FUS, and TAF15 have been linked with the sporadic and familial forms of ALS. However, the exact pathogenic mechanism of ALS is still unknown. Recently, we found that ALS-causing genes such as TDP-43, FUS, and TAF15 genetically interact with mitochondrial dynamics regulatory genes. In this study, we show that mitochondrial fission was highly enhanced in muscles and motor neurons of TDP-43, FUS, and TAF15-induced fly models of ALS. Furthermore, the mitochondrial fission defects were rescued by co-expression of mitochondrial dynamics regulatory genes such as Marf, Opa1, and the dominant negative mutant form of Drp1. Moreover, we found that the expression level of Marf was decreased in ALS-induced flies. These results indicate that the imbalance of mitochondrial dynamics caused by instability of Marf is linked to the pathogenesis of TDP-43, FUS, and TAF15-associated ALS.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Biochem. Biophys. Res. Commun.
    Title
    Biochemical and Biophysical Research Communications
    Publication Year
    1959-
    ISBN/ISSN
    0006-291X
    Data From Reference