FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Stone, B., Evans, L., Coleman, J., Kuebler, D. (2013). Genetic and pharmacological manipulations that alter metabolism suppress seizure-like activity in Drosophila.  Brain Res. 1496(): 94--103.
FlyBase ID
FBrf0220631
Publication Type
Research paper
Abstract
There is increasing evidence that alterations in metabolism can affect seizure susceptibility in a wide range of organisms. In order to investigate the link between metabolism and seizures, we took advantage of a group of Drosophila mutants, the Bang-sensitive (BS) paralytics, which are 3-10 times more susceptible to seizure-like activity (SLA) than wild type flies following a variety of stimuli including mechanical shock. To alter metabolism, we introduced the atsugari (atu) mutation into three of the BS mutants, easily shocked (eas), bang senseless (bss), and technical knockout (tko). The atu mutants, which exhibit reduced expression of the Drosophila ortholog of dystroglycan gene, have previously been shown to have a higher metabolic rate than wild type flies. Following mechanical shock, all three BS;atu double mutants displayed a reduction in SLA and the eas;atu and tko;atu double mutants recovered from the shock quicker than the respective single mutant BS flies. In addition, the eas;atu and tko;atu flies displayed higher levels of metabolism as compared to the single mutant BS flies. To further study the correlation between metabolism and seizure susceptibility, the three BS strains were fed a sulfonylurea drug (tolbutamide) known to both increase heamolymph glucose concentrations and stimulate lipid metabolism in flies. Following mechanical shock, the eas and tko mutants fed tolbutamide displayed less SLA and recovered quicker than unfed flies. While the bss mutants fed tolbutamide did not display a reduction in SLA, they did recover quicker than unfed controls. These data indicate that the upregulation of metabolism can have a protective effect against seizure susceptibility, a result that suggests new avenues for possible drug development.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Brain Res.
    Title
    Brain Research
    Publication Year
    1966-
    ISBN/ISSN
    0006-8993
    Data From Reference
    Genes (4)