FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Chen, S., Kaneko, S., Ma, X., Chen, X., Ip, Y.T., Xu, L., Xie, T. (2010). Lissencephaly-1 controls germline stem cell self-renewal through modulating bone morphogenetic protein signaling and niche adhesion.  Proc. Natl. Acad. Sci. U.S.A. 107(46): 19939--19944.
FlyBase ID
FBrf0212350
Publication Type
Research paper
Abstract
In the Drosophila ovary, bone morphogenetic protein (BMP) signaling activated by the niche promotes germline stem cell (GSC) self-renewal and proliferation, whereas E-cadherin-mediated cell adhesion anchors GSCs in the niche for their continuous self-renewal. Here we show that Lissencephaly-1 (Lis1) regulates BMP signaling and E-cadherin-mediated adhesion between GSCs and their niche and thereby controls GSC self-renewal. Lis1 mutant GSCs are lost faster than control GSCs because of differentiation but not because of cell death, indicating that Lis1 controls GSC self-renewal. The Lis1 mutant GSCs exhibit reduced BMP signaling activity, and Lis1 interacts genetically with the BMP pathway components in the regulation of GSC maintenance. Mechanistically, Lis1 binds directly to and stabilizes the SMAD protein Mothers against decapentaplegic (Mad), facilitates its phosphorylation, and thereby regulates BMP signaling. Finally, the Lis1 mutant GSCs accumulate less E-cadherin in the stem cell-niche junction than do their wild-type counterparts. Germline-specific expression of an activated BMP receptor thickveins (Tkv) or E-cadherin can partially rescue the loss phenotype of Lis1 mutant GSCs. Therefore, this study has revealed a role of Lis1 in the control of Drosophila ovarian GSC self-renewal, at least partly by regulating niche signal transduction and niche adhesion. It has been known that Lis1 controls neural precursor/stem cell proliferation in the developing mammalian brain; this study further suggests that Lis1, which is widely expressed in adult mammalian tissues, could regulate adult tissue stem cells through modulating niche signaling and adhesion.
PubMed ID
PubMed Central ID
PMC2993424 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Proc. Natl. Acad. Sci. U.S.A.
    Title
    Proceedings of the National Academy of Sciences of the United States of America
    Publication Year
    1915-
    ISBN/ISSN
    0027-8424
    Data From Reference
    Alleles (13)
    Gene Groups (1)
    Genes (12)
    Physical Interactions (1)
    Cell Lines (1)
    Natural transposons (1)
    Insertions (1)
    Experimental Tools (1)
    Transgenic Constructs (6)