FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Baqri, R.M., Turner, B.A., Rheuben, M.B., Hammond, B.D., Kaguni, L.S., Miller, K.E. (2009). Disruption of mitochondrial DNA replication in Drosophila increases mitochondrial fast axonal transport in vivo.  PLoS ONE 4(11): e7874.
FlyBase ID
FBrf0209369
Publication Type
Research paper
Abstract
Mutations in mitochondrial DNA polymerase (pol gamma) cause several progressive human diseases including Parkinson's disease, Alper's syndrome, and progressive external ophthalmoplegia. At the cellular level, disruption of pol gamma leads to depletion of mtDNA, disrupts the mitochondrial respiratory chain, and increases susceptibility to oxidative stress. Although recent studies have intensified focus on the role of mtDNA in neuronal diseases, the changes that take place in mitochondrial biogenesis and mitochondrial axonal transport when mtDNA replication is disrupted are unknown. Using high-speed confocal microscopy, electron microscopy and biochemical approaches, we report that mutations in pol gamma deplete mtDNA levels and lead to an increase in mitochondrial density in Drosophila proximal nerves and muscles, without a noticeable increase in mitochondrial fragmentation. Furthermore, there is a rise in flux of bidirectional mitochondrial axonal transport, albeit with slower kinesin-based anterograde transport. In contrast, flux of synaptic vesicle precursors was modestly decreased in pol gamma-alpha mutants. Our data indicate that disruption of mtDNA replication does not hinder mitochondrial biogenesis, increases mitochondrial axonal transport, and raises the question of whether high levels of circulating mtDNA-deficient mitochondria are beneficial or deleterious in mtDNA diseases.
PubMed ID
PubMed Central ID
PMC2773408 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    PLoS ONE
    Title
    PLoS ONE
    Publication Year
    2006-
    ISBN/ISSN
    1932-6203
    Data From Reference
    Alleles (4)
    Genes (2)
    Human Disease Models (2)