FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Brembs, B. (2009). Mushroom bodies regulate habit formation in Drosophila.  Curr. Biol. 19(16): 1351--1355.
FlyBase ID
FBrf0208552
Publication Type
Research paper
Abstract
To make good decisions, we evaluate past choices to guide later decisions. In most situations, we have the opportunity to simultaneously learn about both the consequences of our choice (i.e., operantly) and the stimuli associated with correct or incorrect choices (i.e., classically). Interestingly, in many species, including humans, these learning processes occasionally lead to irrational decisions. An extreme case is the habitual drug user consistently administering the drug despite the negative consequences, but we all have experience with our own, less severe habits. The standard animal model employs a combination of operant and classical learning components to bring about habit formation in rodents. After extended training, these animals will press a lever even if the outcome associated with lever-pressing is no longer desired. In this study, experiments with wild-type and transgenic flies revealed that a prominent insect neuropil, the mushroom bodies (MBs), regulates habit formation in flies by inhibiting the operant learning system when a predictive stimulus is present. This inhibition enables generalization of the classical memory and prevents premature habit formation. Extended training in wild-type flies produced a phenocopy of MB-impaired flies, such that generalization was abolished and goal-directed actions were transformed into habitual responses.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Curr. Biol.
    Title
    Current Biology
    Publication Year
    1991-
    ISBN/ISSN
    0960-9822
    Data From Reference
    Alleles (4)
    Genes (2)
    Insertions (2)
    Transgenic Constructs (2)