FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Chang, M.V., Chang, J.L., Gangopadhyay, A., Shearer, A., Cadigan, K.M. (2008). Activation of wingless targets requires bipartite recognition of DNA by TCF.  Curr. Biol. 18(23): 1877--1881.
FlyBase ID
FBrf0207270
Publication Type
Research paper
Abstract
Specific recognition of DNA by transcription factors is essential for precise gene regulation. In Wingless (Wg) signaling in Drosophila, target gene regulation is controlled by T cell factor (TCF), which binds to specific DNA sequences through a high mobility group (HMG) domain. However, there is considerable variability in TCF binding sites, raising the possibility that they are not sufficient for target location. Some isoforms of human TCF contain a domain, termed the C-clamp, that mediates binding to an extended sequence in vitro. However, the significance of this extended sequence for the function of Wnt response elements (WREs) is unclear. In this report, we identify a cis-regulatory element that, to our knowledge, was previously unpublished. The element, named the TCF Helper site (Helper site), is essential for the activation of several WREs. This motif greatly augments the ability of TCF binding sites to respond to Wg signaling. Drosophila TCF contains a C-clamp that enhances in vitro binding to TCF-Helper site pairs and is required for transcriptional activation of WREs containing Helper sites. A genome-wide search for clusters of TCF and Helper sites identified two new WREs. Our data suggest that DNA recognition by fly TCF occurs through a bipartite mechanism, involving both the HMG domain and the C-clamp, which enables TCF to locate and activate WREs in the nucleus.
PubMed ID
PubMed Central ID
PMC3105462 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Curr. Biol.
    Title
    Current Biology
    Publication Year
    1991-
    ISBN/ISSN
    0960-9822
    Data From Reference