FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Laplante, C., Nilson, L.A. (2006). Differential expression of the adhesion molecule Echinoid drives epithelial morphogenesis in Drosophila.  Development 133(16): 3255--3264.
FlyBase ID
FBrf0193579
Publication Type
Research paper
Abstract
Epithelial morphogenesis requires cell movements and cell shape changes coordinated by modulation of the actin cytoskeleton. We identify a role for Echinoid (Ed), an immunoglobulin domain-containing cell-adhesion molecule, in the generation of a contractile actomyosin cable required for epithelial morphogenesis in both the Drosophila ovarian follicular epithelium and embryo. Analysis of ed mutant follicle cell clones indicates that the juxtaposition of wild-type and ed mutant cells is sufficient to trigger actomyosin cable formation. Moreover, in wild-type ovaries and embryos, specific epithelial domains lack detectable Ed, thus creating endogenous interfaces between cells with and without Ed; these interfaces display the same contractile characteristics as the ectopic Ed expression borders generated by ed mutant clones. In the ovary, such an interface lies between the two cell types of the dorsal appendage primordia. In the embryo, Ed is absent from the amnioserosa during dorsal closure, generating an Ed expression border with the lateral epidermis that coincides with the actomyosin cable present at this interface. In both cases, ed mutant epithelia exhibit loss of this contractile structure and subsequent defects in morphogenesis. We propose that local modulation of the cytoskeleton at Ed expression borders may represent a general mechanism for promoting epithelial morphogenesis.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Development
    Title
    Development
    Publication Year
    1987-
    ISBN/ISSN
    0950-1991
    Data From Reference
    Alleles (6)
    Genes (11)
    Insertions (2)
    Transgenic Constructs (2)