FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Allan, A.K., Du, J., Davies, S.A., Dow, J.A. (2005). Genome-wide survey of V-ATPase genes in Drosophila reveals a conserved renal phenotype for lethal alleles.  Physiol. Genomics 22(2): 128--138.
FlyBase ID
FBrf0188241
Publication Type
Research paper
Abstract
V-ATPases are ubiquitous, vital proton pumps that play a multiplicity of roles in higher organisms. In many epithelia, they are the major energizer of cotransport processes and have been implicated in functions as diverse as fluid secretion and longevity. The first animal knockout of a V-ATPase was identified in Drosophila, and its recessive lethality demonstrated the essential nature of V-ATPases. This article surveys the entire V-ATPase gene family in Drosophila, both experimentally and in silico. Adult expression patterns of most of the genes are shown experimentally for the first time, using in situ hybridization or reporter gene expression, and these results are reconciled with published expression and microarray data. For each subunit, the single gene identified previously by microarray, as upregulated and abundant in tubules, is shown to be similarly abundant in other epithelia in which V-ATPases are known to be important; there thus appears to be a single dominant "plasma membrane" V-ATPase holoenzyme in Drosophila. This provides the most comprehensive view of V-ATPase expression yet in a multicellular organism. The transparent Malpighian tubule phenotype first identified in lethal alleles of vha55, the gene encoding the B-subunit, is shown to be general to those plasma membrane V-ATPase subunits for which lethal alleles are available, and to be caused by failure to accumulate uric acid crystals. These results coincide with the expression view of the gene family, in which 13 of the genes are specialized for epithelial roles, whereas others have spatially or temporally restricted patterns of expression.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Physiol. Genomics
    Title
    Physiological Genomics
    Publication Year
    1999-
    ISBN/ISSN
    1094-8341
    Data From Reference