FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Vidal, M., Wells, S., Ryan, A., Cagan, R. (2005). ZD6474 suppresses oncogenic RET isoforms in a Drosophila model for type 2 multiple endocrine neoplasia syndromes and papillary thyroid carcinoma.  Cancer Res. 65(9): 3538--3541.
FlyBase ID
FBrf0187217
Publication Type
Research paper
Abstract
Patients with hereditary medullary thyroid carcinoma (MTC) associated with multiple endocrine neoplasia (MEN) types 2A and 2B and familial MTC (FMTC) have mutations in the RET proto-oncogene. Approximately 40 percent of patients with papillary thyroid carcinoma (PTC) typically have either intrachromosomal or extrachromosomal rearrangements that join the promoter and NH(2)-terminal domains of unrelated genes to the COOH-terminal fragment of RET. The RET point mutations associated with MEN2A, MEN2B, or FMTC, or the chromosomal breakpoints and translocations associated with PTC, typically activate the RET receptor tyrosine kinase (RTK). RET kinase inhibitors are likely to be beneficial for patients with hereditary MTC, where currently there is no effective chemotherapy or radiation therapy. Recently, the low molecular weight tyrosine kinase inhibitor ZD6474 was found to block the enzymatic activity of RET-derived oncoproteins in cultured cell lines. We have developed a Drosophila model for MEN2A and MEN2B diseases by targeting oncogenic forms of RET to the developing Drosophila eye. Here we show that, when fed orally, ZD6474 suppressed RET-mediated phenotypes within the context of this in vivo model. Importantly, ZD6474 showed high efficacy and very low toxicity. This compound failed to significantly suppress an activated form of another RTK, the Drosophila epidermal growth factor receptor, nor did it suppress the activity of downstream components of the RET/Ras pathway. Our results support the view that targeting chemical kinase inhibitors such as ZD6474 to tissues with oncogenic forms of RET is a useful treatment strategy for RET-dependent carcinomas.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Cancer Res.
    Title
    Cancer Research
    Publication Year
    1941-
    ISBN/ISSN
    0008-5472
    Data From Reference
    Alleles (6)
    Chemicals (1)
    Genes (5)
    Human Disease Models (2)
    Transgenic Constructs (5)