FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Qi, D., Larsson, J., Mannervik, M. (2004). Drosophila Ada2b is required for viability and normal histone H3 acetylation.  Mol. Cell. Biol. 24(18): 8080--8089.
FlyBase ID
FBrf0180535
Publication Type
Research paper
Abstract
Regulation of chromatin through histone acetylation is an important step in gene expression. The Gcn5 histone acetyltransferase is part of protein complexes, e.g., the SAGA complex, that interact with transcriptional activators, targeting the enzyme to specific promoters and assisting in recruitment of the basal RNA polymerase transcription machinery. The Ada2 protein directly binds to Gcn5 and stimulates its catalytic activity. Drosophila contains two Ada2 proteins, Drosophila Ada2a (dAda2a) and dAda2b. We have generated flies that lack dAda2b, which is part of a Drosophila SAGA-like complex. dAda2b is required for viability in Drosophila, and its deletion causes a reduction in histone H3 acetylation. A global hypoacetylation of chromatin was detected on polytene chromosomes in dAda2b mutants. This indicates that the dGcn5-dAda2b complex could have functions in addition to assisting in transcriptional activation through gene-specific acetylation. Although the Drosophila p53 protein was previously shown to interact with the SAGA-like complex in vitro, we find that p53 induction of reaper gene expression occurs normally in dAda2b mutants. Moreover, dAda2b mutant animals show excessive p53-dependent apoptosis in response to gamma radiation. Based on this result, we speculate that dAda2b may be necessary for efficient DNA repair or generation of a DNA damage signal. This could be an evolutionarily conserved function, since a yeast ada2 mutant is also sensitive to a genotoxic agent.
PubMed ID
PubMed Central ID
PMC515027 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Mol. Cell. Biol.
    Title
    Molecular and Cellular Biology
    Publication Year
    1981-
    ISBN/ISSN
    0270-7306
    Data From Reference
    Aberrations (1)
    Alleles (10)
    Genes (10)
    Physical Interactions (1)
    Insertions (1)
    Transgenic Constructs (3)