FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Kruse, K., Pantazis, P., Bollenbach, T., Julicher, F., Gonzalez-Gaitan, M. (2004). Dpp gradient formation by dynamin-dependent endocytosis: receptor trafficking and the diffusion model.  Development 131(19): 4843--4856.
FlyBase ID
FBrf0180152
Publication Type
Research paper
Abstract
Developing cells acquire positional information by reading the graded distribution of morphogens. In Drosophila, the Dpp morphogen forms a long-range concentration gradient by spreading from a restricted source in the developing wing. It has been assumed that Dpp spreads by extracellular diffusion. Under this assumption, the main role of endocytosis in gradient formation is to downregulate receptors at the cell surface. These surface receptors bind to the ligand and thereby interfere with its long-range movement. Recent experiments indicate that Dpp spreading is mediated by Dynamin-dependent endocytosis in the target tissue, suggesting that extracellular diffusion alone cannot account for Dpp dispersal. Here, we perform a theoretical study of a model for morphogen spreading based on extracellular diffusion, which takes into account receptor binding and trafficking. We compare profiles of ligand and surface receptors obtained in this model with experimental data. To this end, we monitored directly the pool of surface receptors and extracellular Dpp with specific antibodies. We conclude that current models considering pure extracellular diffusion cannot explain the observed role of endocytosis during Dpp long-range movement.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Development
    Title
    Development
    Publication Year
    1987-
    ISBN/ISSN
    0950-1991
    Data From Reference
    Alleles (6)
    Genes (5)
    Experimental Tools (1)
    Transgenic Constructs (4)