FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Bertet, C., Sulak, L., Lecuit, T. (2004). Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation.  Nature 429(6992): 667--671.
FlyBase ID
FBrf0178985
Publication Type
Research paper
Abstract
Shaping a developing organ or embryo relies on the spatial regulation of cell division and shape. However, morphogenesis also occurs through changes in cell-neighbourhood relationships produced by intercalation. Intercalation poses a special problem in epithelia because of the adherens junctions, which maintain the integrity of the tissue. Here we address the mechanism by which an ordered process of cell intercalation directs polarized epithelial morphogenesis during germ-band elongation, the developmental elongation of the Drosophila embryo. Intercalation progresses because junctions are spatially reorganized in the plane of the epithelium following an ordered pattern of disassembly and reassembly. The planar remodelling of junctions is not driven by external forces at the tissue boundaries but depends on local forces at cell boundaries. Myosin II is specifically enriched in disassembling junctions, and its planar polarized localization and activity are required for planar junction remodelling and cell intercalation. This simple cellular mechanism provides a general model for polarized morphogenesis in epithelial organs.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Nature
    Title
    Nature
    Publication Year
    1869-
    ISBN/ISSN
    0028-0836
    Data From Reference