FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Stegman, M.A., Vallance, J.E., Elangovan, G., Sosinski, J., Cheng, Y., Robbins, D.J. (2000). Identification of a tetrameric Hedgehog signaling complex.  J. Biol. Chem. 275(29): 21809--21812.
FlyBase ID
FBrf0128807
Publication Type
Research paper
Abstract
Hedgehog (Hh) signal transduction requires a large cytoplasmic multi-protein complex that binds microtubules in an Hh-dependent manner. Here, we show that three members of this complex, Costal2 (Cos2), Fused (Fu), and Cubitus interruptus (Ci), bind each other directly to form a trimeric complex. We demonstrate that this trimeric signaling complex exists in Drosophila lacking Suppressor of Fused (Su(fu)), an extragenic suppressor of fu, indicating that Su(fu) is not required for the formation, or apparently function, of the Hh signaling complex. However, we subsequently show that Su(fu), although not a requisite component of this complex, does form a tetrameric complex with Fu, Cos2, and Ci. This additional Su(fu)-containing Hh signaling complex does not appear to be enriched on microtubules. Additionally, we demonstrate that in response to Hh Ci accumulates in the nucleus without its various cytoplasmic binding partners, including Su(fu). We discuss a model in which Su(fu) and Cos2 each bind to Fu and Ci to exert some redundant effect on Ci such as cytoplasmic retention. This model is consistent with genetic data demonstrating that Su(fu) is not required for Hh signal transduction proper and with the elaborate genetic interactions observed among Su(fu), fu, cos2, and ci.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    J. Biol. Chem.
    Title
    Journal of Biological Chemistry
    Publication Year
    1905-
    ISBN/ISSN
    0021-9258
    Data From Reference
    Alleles (1)
    Gene Groups (1)
    Genes (5)
    Physical Interactions (16)
    Cell Lines (1)