FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Rozovskaia, T., Tillib, S., Smith, S., Sedkov, Y., Rozenblatt-Rosen, O., Petruk, S., Yano, T., Nakamura, T., Ben-Simchon, L., Gildea, J., Croce, C.M., Shearn, A., Canaani, E., Mazo, A. (1999). Trithorax and ASH1 interact directly and associate with the trithorax group-responsive bxd region of the Ultrabithorax promoter.  Mol. Cell. Biol. 19(9): 6441--6447.
FlyBase ID
FBrf0110688
Publication Type
Research paper
Abstract
Trithorax (TRX) and ASH1 belong to the trithorax group (trxG) of transcriptional activator proteins, which maintains homeotic gene expression during Drosophila development. TRX and ASH1 are localized on chromosomes and share several homologous domains with other chromatin-associated proteins, including a highly conserved SET domain and PHD fingers. Based on genetic interactions between trx and ash1 and our previous observation that association of the TRX protein with polytene chromosomes is ash1 dependent, we investigated the possibility of a physical linkage between the two proteins. We found that the endogenous TRX and ASH1 proteins coimmunoprecipitate from embryonic extracts and colocalize on salivary gland polytene chromosomes. Furthermore, we demonstrated that TRX and ASH1 bind in vivo to a relatively small (4 kb) bxd subregion of the homeotic gene Ultrabithorax (Ubx), which contains several trx response elements. Analysis of the effects of ash1 mutations on the activity of this regulatory region indicates that it also contains ash1 response element(s). This suggests that ASH1 and TRX act on Ubx in relatively close proximity to each other. Finally, TRX and ASH1 appear to interact directly through their conserved SET domains, based on binding assays in vitro and in yeast and on coimmunoprecipitation assays with embryo extracts. Collectively, these results suggest that TRX and ASH1 are components that interact either within trxG protein complexes or between complexes that act in close proximity on regulatory DNA to maintain Ubx transcription.
PubMed ID
PubMed Central ID
PMC84613 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Mol. Cell. Biol.
    Title
    Molecular and Cellular Biology
    Publication Year
    1981-
    ISBN/ISSN
    0270-7306
    Data From Reference
    Alleles (3)
    Genes (3)
    Physical Interactions (8)
    Insertions (1)
    Transgenic Constructs (1)