FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Held, L.I., Heup, M.A. (1996). Genetic mosaic analysis of decapentaplegic and wingless gene function in the Drosophila leg.  Dev. Genes Evol. 206(3): 180--194.
FlyBase ID
FBrf0091076
Publication Type
Research paper
Abstract
Genetically mosaic flies were constructed which lack a functional decapentaplegic (dpp) or wingless (wg) gene in portions of their leg epidermis, and the leg cuticle was examined for defects. Although dpp has previously been shown to be transcribed both ventrally and dorsally, virtually the only dpp-null clones that affect leg anatomy are those which reside dorsally. Conversely, wg-null clones only cause leg defects when they reside ventrally - a result that was expected, given that wg is only expressed ventrally. Both findings are consistent with models of leg development in which the future tip of the leg is specified by an interaction between dpp and wg at the center of the leg disc. Null clones can cause mirror-image cuticular duplications confined to individual leg segments. Double-ventral, mirror-image patterns are observed with dpp-null clones, and double-dorsal patterns with wg-null clones. Clones that are doubly mutant (null for both dpp and wg) manifest reduced frequencies for both types of duplications. Duplications can include cells from surrounding non-mutant territory. Such nonautonomy implies that both dpp and wg are involved in positional signaling, not merely in the maintenance of cellular identities. However, neither gene product appears to function as a morphogen for the entire leg disc, since the effects of each gene's null clones are restricted to a discrete part of the circumference. Interestingly, the circumferential domains where dpp and wg are needed are complementary to one another.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Dev. Genes Evol.
    Title
    Development genes and evolution
    Publication Year
    1996-
    ISBN/ISSN
    0949-944X
    Data From Reference
    Aberrations (2)
    Alleles (5)
    Balancers (1)
    Genes (2)
    Transgenic Constructs (1)