FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Wood, B.W., Shi, X., Weil, T.T. (2024). F-actin coordinates spindle morphology and function in Drosophila meiosis.  PLoS Genet. 20(1): e1011111.
FlyBase ID
FBrf0258613
Publication Type
Research paper
Abstract
Meiosis is a highly conserved feature of sexual reproduction that ensures germ cells have the correct number of chromosomes prior to fertilization. A subset of microtubules, known as the spindle, are essential for accurate chromosome segregation during meiosis. Building evidence in mammalian systems has recently highlighted the unexpected requirement of the actin cytoskeleton in chromosome segregation; a network of spindle actin filaments appear to regulate many aspects of this process. Here we show that Drosophila oocytes also have a spindle population of actin that appears to regulate the formation of the microtubule spindle and chromosomal movements throughout meiosis. We demonstrate that genetic and pharmacological disruption of the actin cytoskeleton has a significant impact on spindle morphology, dynamics, and chromosome alignment and segregation during maturation and the metaphase-anaphase transition. We further reveal a role for calcium in maintaining the microtubule spindle and spindle actin. Together, our data highlights potential conservation of morphology and mechanism of the spindle actin during meiosis.
PubMed ID
PubMed Central ID
PMC10807755 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    PLoS Genet.
    Title
    PLoS Genetics
    Publication Year
    2005-
    ISBN/ISSN
    1553-7404 1553-7390
    Data From Reference
    Alleles (5)
    Genes (4)
    Insertions (1)
    Transgenic Constructs (2)