FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Taschuk, F., Tapescu, I., Moy, R.H., Cherry, S. (2020). DDX56 Binds to Chikungunya Virus RNA To Control Infection.  MBio 11(5): e02623--e02620.
FlyBase ID
FBrf0247080
Publication Type
Research paper
Abstract
DEAD box RNA helicases regulate diverse facets of RNA biology. Proteins of this family carry out essential cellular functions, and emerging literature is revealing additional roles in immune defense. Using RNA interference screening, we identified an evolutionarily conserved antiviral role for the helicase DDX56 against the alphavirus Sindbis virus (SINV), a mosquito-transmitted pathogen that infects humans. Depletion of DDX56 enhanced infection in Drosophila and human cells. Furthermore, we found that DDX56 also controls the emerging alphavirus chikungunya virus (CHIKV) through an interferon-independent mechanism. Using cross-linking immunoprecipitation (CLIP-Seq), we identified a predicted stem-loop on the viral genomic RNA bound by DDX56. Mechanistically, we found that DDX56 levels increase in the cytoplasm during CHIKV infection. In the cytoplasm, DDX56 impacts the earliest step in the viral replication cycle by binding and destabilizing the incoming viral genomic RNA, thereby attenuating infection. Thus, DDX56 is a conserved antiviral RNA binding protein that controls alphavirus infection.IMPORTANCE Arthropod-borne viruses are diverse pathogens and include the emerging virus chikungunya virus, which is associated with human disease. Through genetic screening, we found that the conserved RNA binding protein DDX56 is antiviral against chikungunya virus in insects and humans. DDX56 relocalizes from the nucleus to the cytoplasm, where it binds to a stem-loop in the viral genome and destabilizes incoming genomes. Thus, DDX56 is an evolutionarily conserved antiviral factor that controls alphavirus infection.
PubMed ID
PubMed Central ID
PMC7593974 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    MBio
    Title
    mBio
    ISBN/ISSN
    2150-7511
    Data From Reference
    Genes (23)
    Human Disease Models (2)
    Cell Lines (1)