FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Zhang, C., Yang, Y., Liang, W., Wang, T., Wang, S., Wang, X., Wang, Y., Jiang, H., Feng, H. (2019). Neuroprotection by urate on the mutant hSOD1-related cellular and Drosophila models of amyotrophic lateral sclerosis: Implication for GSH synthesis via activating Akt/GSK3β/Nrf2/GCLC pathways.  Brain Res. Bull. 146(): 287--301.
FlyBase ID
FBrf0241460
Publication Type
Research paper
Abstract
Oxidative stress has been considered as a principal mechanism of motor neuron death in amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease which could be caused by dominant mutations in an antioxidant enzyme superoxide dismutase-1 (SOD1). The aim of the present study was to investigate the potential neuroprotective effects and mechanisms of urate, an important endogenous antioxidant and a biomarker of favorable ALS progression rates, in the mutant human SOD1-related cellular and Drosophila models of ALS. Our results showed that urate treatment provided neuroprotective effects as confirmed by enhanced survival, attenuated motor impairments, reduced oxidative damage and increased antioxidant defense in hSOD1-G85R-expressing Drosophila models of ALS. In vitro studies, we demonstrated that urate protected motor neurons (NSC-34 cells) against hSOD1-G93A-induced cell damage and apoptosis by decreasing reactive oxygen specials (ROS) production and oxidative damage. Moreover, urate markedly increased the expression and activation of nuclear factor erythroid 2-related factor 2 (Nrf2), stimulated Nrf2-targeted antioxidant gene glutathione cysteine ligase catalytic subunit (GCLC) expression and glutathione (GSH) synthesis by upregulating Akt/GSK3β pathway. Furthermore, the inhibition of Akt pathway with LY294002 abolished urate-mediated elevation of GSH synthesis and neuroprotective effects both in vivo and in vitro. Overall, these results suggested that, in addition to its direct scavenging of ROS, urate markedly enhanced GSH expression by activating Akt/GSK3β/Nrf2/GCLC pathway, and thus offering neuroprotective effects on motor neurons against oxidative stress.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Brain Res. Bull.
    Title
    Brain Research Bulletin
    Publication Year
    1976-
    ISBN/ISSN
    0361-9230
    Data From Reference
    Alleles (3)
    Chemicals (1)
    Genes (2)
    Human Disease Models (1)
    Insertions (1)
    Transgenic Constructs (2)