FB2024_04 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Buhler, K., Clements, J., Winant, M., Bolckmans, L., Vulsteke, V., Callaerts, P. (2018). Growth control through regulation of insulin signalling by nutrition-activated steroid hormone in Drosophila.  Development 145(21): dev165654.
FlyBase ID
FBrf0240475
Publication Type
Research paper
Abstract
Growth and maturation are coordinated processes in all animals. Integration of internal cues, such as signalling pathways, with external cues, such as nutritional status, is paramount for an orderly progression of development and growth. In Drosophila, this involves insulin and steroid signalling, but the underlying mechanisms and their coordination are incompletely understood. We show that bioactive 20-hydroxyecdysone production by the enzyme Shade in the fat body is a nutrient-dependent process. We demonstrate that under fed conditions, Shade plays a role in growth control. We identify the trachea and the insulin-producing cells in the brain as direct targets through which 20-hydroxyecdysone regulates insulin signalling. The identification of trachea-dependent regulation of insulin signalling exposes an important variable that may have been overlooked in other studies focusing on insulin signalling in Drosophila Our findings provide a potentially conserved, novel mechanism by which nutrition can modulate steroid hormone bioactivation, reveal an important caveat of a commonly used transgenic tool to study insulin-producing cell function, and yield further insights into how steroid and insulin signalling are coordinated during development to regulate growth and developmental timing.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Development
    Title
    Development
    Publication Year
    1987-
    ISBN/ISSN
    0950-1991
    Data From Reference