FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Wang, T.H., Wang, S.Y., Wang, X.D., Jiang, H.Q., Yang, Y.Q., Wang, Y., Cheng, J.L., Zhang, C.T., Liang, W.W., Feng, H.L. (2018). Fisetin Exerts Antioxidant and Neuroprotective Effects in Multiple Mutant hSOD1 Models of Amyotrophic Lateral Sclerosis by Activating ERK.  Neuroscience 379(): 152--166.
FlyBase ID
FBrf0238755
Publication Type
Research paper
Abstract
Oxidative stress exhibits a central role in the course of amyotrophic lateral sclerosis (ALS), a progressive neurodegenerative disease commonly found to include a copper/zinc superoxide dismutase (SOD1) gene mutation. Fisetin, a natural antioxidant, has shown benefits in varied neurodegenerative diseases. The possible effect of fisetin in ALS has not been clarified as of yet. We investigated whether fisetin affected mutant hSOD1 ALS models. Three different hSOD1-related mutant models were used: Drosophila expressing mutant hSOD1G85R, hSOD1G93A NSC34 cells, and transgenic mice. Fisetin treatment provided neuroprotection as demonstrated by an improved survival rate, attenuated motor impairment, reduced ROS damage and regulated redox homeostasis compared with those in controls. Furthermore, fisetin increased the expression of phosphorylated ERK and upregulated antioxidant factors, which were reversed by MEK/ERK inhibition. Finally, fisetin reduced the levels of both mutant and wild-type hSOD1 in vivo and in vitro, as well as the levels of detergent-insoluble hSOD1 proteins. The results indicate that fisetin protects cells from ROS damage and improves the pathological behaviors caused by oxidative stress in disease models related to SOD1 gene mutations probably by activating ERK, thereby providing a potential treatment for ALS.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Neuroscience
    Title
    Neuroscience
    Publication Year
    1976-
    ISBN/ISSN
    0306-4522
    Data From Reference
    Chemicals (2)
    Genes (4)
    Human Disease Models (1)