FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Jung, W.H., Liu, C.C., Yu, Y.L., Chang, Y.C., Lien, W.Y., Chao, H.C., Huang, S.Y., Kuo, C.H., Ho, H.C., Chan, C.C. (2017). Lipophagy prevents activity-dependent neurodegeneration due to dihydroceramide accumulation in vivo.  EMBO Rep. 18(7): 1150--1165.
FlyBase ID
FBrf0238414
Publication Type
Research paper
Abstract
Dihydroceramide desaturases are evolutionarily conserved enzymes that convert dihydroceramide (dhCer) to ceramide (Cer). While elevated Cer levels cause neurodegenerative diseases, the neuronal activity of its direct precursor, dhCer, remains unclear. We show that knockout of the fly dhCer desaturase gene, infertile crescent (ifc), results in larval lethality with increased dhCer and decreased Cer levels. Light stimulation leads to ROS increase and apoptotic cell death in ifc-KO photoreceptors, resulting in activity-dependent neurodegeneration. Lipid-containing Atg8/LC3-positive puncta accumulate in ifc-KO photoreceptors, suggesting lipophagy activation. Further enhancing lipophagy reduces lipid droplet accumulation and rescues ifc-KO defects, indicating that lipophagy plays a protective role. Reducing dhCer synthesis prevents photoreceptor degeneration and rescues ifc-KO lethality, while supplementing downstream sphingolipids does not. These results pinpoint that dhCer accumulation is responsible for ifc-KO defects. Human dhCer desaturase rescues ifc-KO larval lethality, and rapamycin reverses defects caused by dhCer accumulation in human neuroblastoma cells, suggesting evolutionarily conserved functions. This study demonstrates a novel requirement for dhCer desaturase in neuronal maintenance in vivo and shows that lipophagy activation prevents activity-dependent degeneration caused by dhCer accumulation.
PubMed ID
PubMed Central ID
PMC5494533 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    EMBO Rep.
    Title
    EMBO Reports
    Publication Year
    2000-
    ISBN/ISSN
    1469-221X 1469-3178
    Data From Reference