FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Paul, K.R., Molliex, A., Cascarina, S., Boncella, A.E., Taylor, J.P., Ross, E.D. (2017). Effects of Mutations on the Aggregation Propensity of the Human Prion-Like Protein hnRNPA2B1.  Mol. Cell. Biol. 37(8): e00652--e00616.
FlyBase ID
FBrf0235144
Publication Type
Research paper
Abstract
Hundreds of human proteins contain prion-like domains, which are a subset of low-complexity domains with high amino acid compositional similarity to yeast prion domains. A recently characterized mutation in the prion-like domain of the human heterogeneous nuclear ribonucleoprotein hnRNPA2B1 increases the aggregation propensity of the protein and causes multisystem proteinopathy. The mutant protein forms cytoplasmic inclusions when expressed in Drosophila, the mutation accelerates aggregation in vitro, and the mutant prion-like domain can substitute for a portion of a yeast prion domain in supporting prion activity. To examine the relationship between amino acid sequence and aggregation propensity, we made a diverse set of point mutations in the hnRNPA2B1 prion-like domain. We found that the effects on prion formation in Saccharomyces cerevisiae and aggregation in vitro could be predicted entirely based on amino acid composition. However, composition was an imperfect predictor of inclusion formation in Drosophila; while most mutations showed similar behaviors in yeast, in vitro, and in Drosophila, a few showed anomalous behavior. Collectively, these results demonstrate the significant progress that has been made in predicting the effects of mutations on intrinsic aggregation propensity while also highlighting the challenges of predicting the effects of mutations in more complex organisms.
PubMed ID
PubMed Central ID
PMC5376634 (PMC) (EuropePMC)
Related Publication(s)
Note

Manipulating the aggregation activity of human prion-like proteins.
Cascarina et al., 2017, Prion 11(5): 323--331 [FBrf0236974]

Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Mol. Cell. Biol.
    Title
    Molecular and Cellular Biology
    Publication Year
    1981-
    ISBN/ISSN
    0270-7306
    Data From Reference