FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Maruzs, T., Lőrincz, P., Szatmári, Z., Széplaki, S., Sándor, Z., Lakatos, Z., Puska, G., Juhász, G., Sass, M. (2015). Retromer Ensures the Degradation of Autophagic Cargo by Maintaining Lysosome Function in Drosophila.  Traffic 16(10): 1088--1107.
FlyBase ID
FBrf0229652
Publication Type
Research paper
Abstract
The retromer is an evolutionarily conserved coat complex that consists of Vps26, Vps29, Vps35 and a heterodimer of sorting nexin (Snx) proteins in yeast. Retromer mediates the recycling of transmembrane proteins from endosomes to the trans-Golgi network, including receptors that are essential for the delivery of hydrolytic enzymes to lysosomes. Besides its function in lysosomal enzyme receptor recycling, involvement of retromer has also been proposed in a variety of vesicular trafficking events, including early steps of autophagy and endocytosis. Here we show that the late stages of autophagy and endocytosis are impaired in Vps26 and Vps35 deficient Drosophila larval fat body cells, but formation of autophagosomes and endosomes is not compromised. Accumulation of aberrant autolysosomes and amphisomes in the absence of retromer function appears to be the consequence of decreased degradative capacity, as they contain undigested cytoplasmic material. Accordingly, we show that retromer is required for proper cathepsin L trafficking mainly independent of LERP, the Drosophila homolog of the cation-independent mannose 6-phosphate receptor. Finally, we find that Snx3 and Snx6 are also required for proper autolysosomal degradation in Drosophila larval fat body cells.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Traffic
    Title
    Traffic
    Publication Year
    2000-
    ISBN/ISSN
    1398-9219
    Data From Reference
    Gene Groups (1)
    Genes (7)