FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Kuo, P.H., Tzeng, T.H., Huang, Y.C., Chen, Y.H., Chang, Y.C., Ho, Y.L., Wu, J.T., Lee, H.H., Lai, P.J., Liu, K.Y., Cheng, Y.C., Lu, S.S. (2014). Non-Invasive Drosophila ECG Recording by Using Eutectic Gallium-Indium Alloy Electrode: A Feasible Tool for Future Research on the Molecular Mechanisms Involved in Cardiac Arrhythmia.  PLoS ONE 9(9): e104543.
FlyBase ID
FBrf0226278
Publication Type
Research paper
Abstract
Drosophila heart tube is a feasible model for cardiac physiological research. However, obtaining Drosophila electrocardiograms (ECGs) is difficult, due to the weak signals and limited contact area to apply electrodes. This paper presents a non-invasive Gallium-Indium (GaIn) based recording system for Drosophila ECG measurement, providing the heart rate and heartbeat features to be observed. This novel, high-signal-quality system prolongs the recording time of insect ECGs, and provides a feasible platform for research on the molecular mechanisms involved in cardiovascular diseases. In this study, two types of electrode, tungsten needle probes and GaIn electrodes, were used respectively to noiselessly conduct invasive and noninvasive ECG recordings of Drosophila. To further analyze electrode properties, circuit models were established and simulated. By using electromagnetic shielded heart signal acquiring system, consisted of analog amplification and digital filtering, the ECG signals of three phenotypes that have different heart functions were recorded without dissection. The ECG waveforms of different phenotypes of Drosophila recorded invasively and repeatedly with n value (n>5) performed obvious difference in heart rate. In long period ECG recordings, non-invasive method implemented by GaIn electrodes acts relatively stable in both amplitude and period. To analyze GaIn electrode, the correctness of GaIn electrode model established by this paper was validated, presenting accuracy, stability, and reliability. Noninvasive ECG recording by GaIn electrodes was presented for recording Drosophila pupae ECG signals within a limited contact area and signal strength. Thus, the observation of ECG changes in normal and SERCA-depleted Drosophila over an extended period is feasible. This method prolongs insect survival time while conserving major ECG features, and provides a platform for electrophysiological signal research on the molecular mechanism involved in cardiac arrhythmia, as well as research related to drug screening and development.
PubMed ID
PubMed Central ID
PMC4165757 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    PLoS ONE
    Title
    PLoS ONE
    Publication Year
    2006-
    ISBN/ISSN
    1932-6203
    Data From Reference
    Alleles (2)
    Genes (2)
    Human Disease Models (1)
    Insertions (1)
    Transgenic Constructs (1)