FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Baxter, S.L., Allard, D.E., Crowl, C., Sherwood, N.T. (2014). Cold temperature improves mobility and survival in Drosophila models of autosomal-dominant hereditary spastic paraplegia (AD-HSP).  Dis. Model Mech. 7(8): 1005--1012.
FlyBase ID
FBrf0225705
Publication Type
Research paper
Abstract
Autosomal-dominant hereditary spastic paraplegia (AD-HSP) is a crippling neurodegenerative disease for which effective treatment or cure remains unknown. Victims experience progressive mobility loss due to degeneration of the longest axons in the spinal cord. Over half of AD-HSP cases arise from loss-of-function mutations in spastin, which encodes a microtubule-severing AAA ATPase. In Drosophila models of AD-HSP, larvae lacking Spastin exhibit abnormal motor neuron morphology and function, and most die as pupae. Adult survivors display impaired mobility, reminiscent of the human disease. Here, we show that rearing pupae or adults at reduced temperature (18°C), compared with the standard temperature of 24°C, improves the survival and mobility of adult spastin mutants but leaves wild-type flies unaffected. Flies expressing human spastin with pathogenic mutations are similarly rescued. Additionally, larval cooling partially rescues the larval synaptic phenotype. Cooling thus alleviates known spastin phenotypes for each developmental stage at which it is administered and, notably, is effective even in mature adults. We find further that cold treatment rescues larval synaptic defects in flies with mutations in Flower (a protein with no known relation to Spastin) and mobility defects in flies lacking Kat60-L1, another microtubule-severing protein enriched in the CNS. Together, these data support the hypothesis that the beneficial effects of cold extend beyond specific alleviation of Spastin dysfunction, to at least a subset of cellular and behavioral neuronal defects. Mild hypothermia, a common neuroprotective technique in clinical treatment of acute anoxia, might thus hold additional promise as a therapeutic approach for AD-HSP and, potentially, for other neurodegenerative diseases.
PubMed ID
PubMed Central ID
PMC4107329 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Dis. Model Mech.
    Title
    Disease models & mechanisms
    ISBN/ISSN
    1754-8403 1754-8411
    Data From Reference
    Alleles (8)
    Genes (4)
    Human Disease Models (1)
    Insertions (1)
    Transgenic Constructs (3)