FB2024_04 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Aparicio, R., Neyen, C., Lemaitre, B., Busturia, A. (2013). dRYBP Contributes to the Negative Regulation of the Drosophila Imd Pathway.  PLoS ONE 8(4): e62052.
FlyBase ID
FBrf0221307
Publication Type
Research paper
Abstract
The Drosophila humoral innate immune response fights infection by producing antimicrobial peptides (AMPs) through the microbe-specific activation of the Toll or the Imd signaling pathway. Upon systemic infection, the production of AMPs is both positively and negatively regulated to reach a balanced immune response required for survival. Here, we report the function of the dRYBP (drosophila Ring and YY1 Binding Protein) protein, which contains a ubiquitin-binding domain, in the Imd pathway. We have found that dRYBP contributes to the negative regulation of AMP production: upon systemic infection with Gram-negative bacteria, Diptericin expression is up-regulated in the absence of dRYBP and down-regulated in the presence of high levels of dRYBP. Epistatic analyses using gain and loss of function alleles of imd, Relish, or skpA and dRYBP suggest that dRYBP functions upstream or together with SKPA, a member of the SCF-E3-ubiquitin ligase complex, to repress the Imd signaling cascade. We propose that the role of dRYBP in the regulation of the Imd signaling pathway is to function as a ubiquitin adaptor protein together with SKPA to promote SCF-dependent proteasomal degradation of Relish. Beyond the identification of dRYBP as a novel component of Imd pathway regulation, our results also suggest that the evolutionarily conserved RYBP protein may be involved in the human innate immune response.
PubMed ID
PubMed Central ID
PMC3626645 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    PLoS ONE
    Title
    PLoS ONE
    Publication Year
    2006-
    ISBN/ISSN
    1932-6203
    Data From Reference
    Aberrations (2)
    Alleles (9)
    Genes (13)
    Natural transposons (1)
    Insertions (1)
    Experimental Tools (2)
    Transgenic Constructs (6)