FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Kanesaki, T., Hirose, S., Großhans, J., Fuse, N. (2013). Heterotrimeric G protein signaling governs the cortical stability during apical constriction in Drosophila gastrulation.  Mech. Dev. 130(2-3): 132--142.
FlyBase ID
FBrf0220731
Publication Type
Research paper
Abstract
During gastrulation in Drosophila melanogaster, coordinated apical constriction of the cellular surface drives invagination of the mesoderm anlage. Forces generated by the cortical cytoskeletal network have a pivotal role in this cellular shape change. Here, we show that the organisation of cortical actin is essential for stabilisation of the cellular surface against contraction. We found that mutation of genes related to heterotrimeric G protein (HGP) signaling, such as Gβ13F, Gγ1, and ric-8, results in formation of blebs on the ventral cellular surface. The formation of blebs is caused by perturbation of cortical actin and induced by local surface contraction. HGP signaling mediated by two Gα subunits, Concertina and G-iα65A, constitutively regulates actin organisation. We propose that the organisation of cortical actin by HGP is required to reinforce the cortex so that the cells can endure hydrostatic stress during tissue folding.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Mech. Dev.
    Title
    Mechanisms of Development
    Publication Year
    1990-
    ISBN/ISSN
    0925-4773
    Data From Reference
    Alleles (7)
    Genes (6)
    Transgenic Constructs (1)