FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Kuzin, A., Kundu, M., Ross, J., Koizumi, K., Brody, T., Odenwald, W.F. (2012). The cis-regulatory dynamics of the Drosophila CNS determinant castor are controlled by multiple sub-pattern enhancers.  Gene Expr. Patterns 12(7-8): 261--272.
FlyBase ID
FBrf0219381
Publication Type
Research paper
Abstract
In the developing CNS, unique functional identities among neurons and glia are, in part, established as a result of successive transitions in gene expression programs within neural precursor cells. One of the temporal-identity windows within Drosophila CNS neural precursor cells or neuroblasts (NBs) is marked by the expression of a zinc-finger transcription factor (TF) gene, castor (cas). Our analysis of cis-regulatory DNA within a cas loss-of-function rescue fragment has identified seven enhancers that independently activate reporter transgene expression in specific sub-patterns of the wild-type embryonic cas gene expression domain. Most of these enhancers also regulate different aspects of cas expression within the larval and adult CNS. Phylogenetic footprinting reveals that each enhancer is made up of clusters of highly conserved DNA sequence blocks that are flanked by less-conserved inter-cluster spacer sequences. Comparative analysis of the conserved DNA also reveals that cas enhancers share different combinations of sequence elements and many of these shared elements contain core DNA-binding recognition motifs for characterized temporal-identity TFs. Intra-species alignments show that two of the sub-pattern enhancers originated from an inverted duplication and that this repeat is unique to the cas locus in all sequenced Drosophila species. Finally we show that three of the enhancers differentially require cas function for their wild-type regulatory behavior. Cas limits the expression of one enhancer while two others require cas function for full expression. These studies represent a starting point for the further analysis of cas gene expression and the TFs that regulate it.
PubMed ID
PubMed Central ID
PMC3436978 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Gene Expr. Patterns
    Title
    Gene expression patterns : GEP
    Publication Year
    2002-
    ISBN/ISSN
    1567-133X 1872-7298
    Data From Reference