FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Yang, D., Li, T., Liu, Z., Arbez, N., Yan, J., Moran, T.H., Ross, C.A., Smith, W.W. (2012). LRRK2 kinase activity mediates toxic interactions between genetic mutation and oxidative stress in a Drosophila model: Suppression by curcumin.  Neurobiol. Disease 47(3): 385--392.
FlyBase ID
FBrf0218828
Publication Type
Research paper
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by selective loss of dopaminergic neurons and the presence of Lewy bodies. The pathogenesis of PD is believed to involve both genetic susceptibility and environmental factors. Mutations in Leucine-rich repeat kinase 2 (LRRK2) cause genetic forms of PD, and the LRRK2 locus contributes to sporadic PD. Environmental toxins are believed to act in part by causing oxidative stress. Here we employed cell and Drosophila models to investigate the interaction between LRRK2 genetic mutations and oxidative stress. We found that H(2)O(2) increased LRRK2 kinase activity and enhanced LRRK2 cell toxicity in cultured cells and mouse primary cortical neurons. Furthermore, a sub-toxic dose of H(2)O(2) significantly shortened the survival of LRRK2 transgenic flies and augmented LRRK2-induced locomotor defects and dopamine neuron loss. Treatment with a LRRK2 kinase inhibitor (GW5074) or an anti-oxidant (curcumin) significantly suppressed these PD-like phenotypes in flies. Moreover, curcumin significantly reduced LRRK2 kinase activity and the levels of oxidized proteins, and thus acted as not only an antioxidant but also a LRRK2 kinase inhibitor. These results indicate that LRRK2 genetic alterations can interact with oxidative stress, converging on a pathogenic pathway that may be related to PD. These studies also identified curcumin as a LRRK2 kinase inhibitor that may be a useful candidate for LRRK2-linked PD intervention.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Neurobiol. Disease
    Title
    Neurobiology of Disease
    Publication Year
    1994-
    ISBN/ISSN
    0969-9961
    Data From Reference
    Alleles (3)
    Chemicals (3)
    Genes (4)
    Human Disease Models (1)
    Transgenic Constructs (3)