FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Wang, S.P., He, G.L., Chen, R.R., Li, F., Li, G.Q. (2012). THE INVOLVEMENT OF CYTOCHROME P450 MONOOXYGENASES IN METHANOL ELIMINATION IN Drosophila melanogaster LARVAE.  Arch. Insect Biochem. Physiol. 79(4-5): 264--275.
FlyBase ID
FBrf0218094
Publication Type
Research paper
Abstract
Methanol is one of the most common short-chain alcohols in fermenting fruits, the natural food of the fruit fly, Drosophila melanogaster. The larvae cope continuously with methanol at various concentrations in order to survive and develop. In the present article, we found toxicities of dietary methanol and formaldehyde were enhanced by piperonyl butoxide, but not by 3-amino-1, 2, 4-triazole, 4-methylpyrazole, diethylmeleate, and triphenyl phosphate, when assessing by the combination index method. These results reveal that cytochrome P450 monooxygenases (CYPs), rather than catalases, alcohol dehydrogenases, glutathione S-transferases, and esterases, participate in methanol metabolism. Moreover, methanol exposure dramatically increased CYP activity. The ratios of the CYP activities in treated larvae to those in control reached, respectively, up to 3.0-, 3.9-, and 2.7-fold, at methanol concentrations of 22.6, 27.9, and 34.5 mg/g diet. In addition, methanol exposure greatly up-regulated the mRNA expression level of five Cyp genes, which were Cyp304a1, Cyp9f2, Cyp28a5, Cyp4d2, and Cyp4e2. Their resulting proteins were suggested as the candidate enzymes for methanol metabolism in D. melanogaster larvae.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Arch. Insect Biochem. Physiol.
    Title
    Archives of Insect Biochemistry and Physiology
    Publication Year
    1984-
    ISBN/ISSN
    0739-4462
    Data From Reference