FB2024_03 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Chen, Z.X., Zhang, Y.E., Vibranovski, M., Luo, J., Gao, G., Long, M. (2011). Deficiency of x-linked inverted duplicates with male-biased expression and the underlying evolutionary mechanisms in the Drosophila genome.  Mol. Biol. Evol. 28(10): 2823--2832.
FlyBase ID
FBrf0215812
Publication Type
Research paper
Abstract
Inverted duplicates (IDs) are pervasive in genomes and have been reported to play functional roles in various biological processes. However, the general underlying evolutionary forces that maintain IDs in genomes remain largely elusive. Through a systematic screening of the Drosophila melanogaster genome, 20,223 IDs were detected in nonrepetitive intergenic regions, far more than expectation under the neutrality model. 3,846 of these IDs were identified to have stable hairpin structure (i.e., the structural IDs). Based on whole-genome transcriptome profiling data, we found 628 unannotated expressed structural IDs, which had significantly different genomic distributions and structural properties from the unexpressed IDs. Among the expressed structural IDs, 130 exhibited higher expression in males than in females (i.e., male-biased expression). Compared with sex-unbiased ones, these male-biased IDs were significantly underrepresented on the X chromosome, similar to previously reported pattern of male-biased protein-coding genes. These analyses suggest that a selection-driven process, rather than a purely neutral mutation-driven mechanism, contributes to the maintenance of IDs in the Drosophila genome.
PubMed ID
PubMed Central ID
PMC3176832 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Mol. Biol. Evol.
    Title
    Molecular Biology and Evolution
    Publication Year
    1983-
    ISBN/ISSN
    0737-4038 1537-1719
    Data From Reference
    Genes (2)