FB2024_04 , released June 25, 2024
Reference Report
Open Close
Reference
Citation
Kohwi, M., Hiebert, L.S., Doe, C.Q. (2011). The pipsqueak-domain proteins Distal antenna and Distal antenna-related restrict Hunchback neuroblast expression and early-born neuronal identity.  Development 138(9): 1727--1735.
FlyBase ID
FBrf0213466
Publication Type
Research paper
Abstract
A fundamental question in brain development is how precursor cells generate a diverse group of neural progeny in an ordered manner. Drosophila neuroblasts sequentially express the transcription factors Hunchback (Hb), Krüppel (Kr), Pdm1/Pdm2 (Pdm) and Castor (Cas). Hb is necessary and sufficient to specify early-born temporal identity and, thus, Hb downregulation is essential for specification of later-born progeny. Here, we show that distal antenna (dan) and distal antenna-related (danr), encoding pipsqueak motif DNA-binding domain protein family members, are detected in all neuroblasts during the Hb-to-Cas expression window. Dan and Danr are required for timely downregulation of Hb in neuroblasts and for limiting the number of early-born neurons. Dan and Danr function independently of Seven-up (Svp), an orphan nuclear receptor known to repress Hb expression in neuroblasts, because Dan, Danr and Svp do not regulate each other and dan danr svp triple mutants have increased early-born neurons compared with either dan danr or svp mutants. Interestingly, misexpression of Hb can induce Dan and Svp expression in neuroblasts, suggesting that Hb might activate a negative feedback loop to limit its own expression. We conclude that Dan/Danr and Svp act in parallel pathways to limit Hb expression and allow neuroblasts to transition from making early-born neurons to late-born neurons at the proper time.
PubMed ID
PubMed Central ID
PMC3074449 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Development
    Title
    Development
    Publication Year
    1987-
    ISBN/ISSN
    0950-1991
    Data From Reference
    Genes (15)